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ABSTRACT 

Renormalization group arguments are applied to a Reggeon field 

theory which couples fermion and pomeron trajectories. The bare (input) 

fermion propagator has both positive and negative parity poles on the 

physical angular momentum plane for all values of u. However, after 

interacting with the Pomeron, the negative parity pole of the renormalized 

(output) fermion propagator migrates onto an unphysical angular momentum 

sheet for positive u, and so only the positive parity state appears as a 

physical particle. This provides a dynamical explanation for the 

disappearance of the negative parity partner, and is a property which is 

expected to be possessed by most reasonable Reggeon.field theories. 
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The application of Regge theory to processes involving Fermion 

exchange has led to some apparent inconsistencies. In the study of 

backward H-N scattering, one finds a symmetry relation, the MacDowell 

symmetry, among the various invariant amplitudes. This symmetry 

assumes the absence of dynamical singularities at u=O in the A and B 

amplitudes ~ If one describes this process by the exchange of fermion 

Regge poles, the MacDowell symmetry implies that the trajectories of 

the positive and negative parity fermions are related: cu+(~Wl = a-(-.W) 

where W= hi;;. On the other hand, the nucleon trajectory appears to be 

linear in u, and so it would seem that there should exist negative parity 

nucleon particles which are nearly degenerate with their positive parity 

partners. The failure to observe these negative parity states has for 

many years been an outstanding phenomenological puzzle. 

Using the Van Hove model, Carlitz and Kislinger* showed that 

one could construct a more or less acceptable amplitude for backward 

T-N scattering by assuming ab initio that only positive parity particle -- 

states exist. Their procedure was to sum, a la Van-Hove, an infinite -- 

sequence of zero-width resonances, each one of which has positive parity 

when placed on its spin shell. Attempts have also been made to understand 

the absence of parity partners in dual theories. 2 Despite these efforts, 

no fully successful dynamical mechanism has been proposed to account 

for the disappearance of the parity doublets. 

In this note, we wish to describe the results of a calculation which 
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shows dynamically why negative parity partners do not appear as 

physical particles. We strdy the interaction of the pomeron with a 

pair of fermions of opposite parity in a Reggeon field theory using 

the renormalization group. As a result of the pomeron-fermion inter- 

action, the fermion propagator develops a cut and its negative parity 

pole disappears from the physical angular momentum sheet for positive 

u. Note that unlike the approach of Carlitz and Kislinger, 
1 

we make no 

a priori assumptions about the absence of negative parity particles. 

Nevertheless, the renormalized fermion propagator has only positive 

parity singularities on the physical angular momentum sheet for u > 0. 

In what follows, we shall briefly describe the Reggeon field theory 

with which we deal, and then present the results which are important for 

our argument about the disappearance of the parity partners. A fuller 

description of this work, as well as a discussion of its implications for 

the Reggeon calculus will be presented elsewhere. 3 

The field theory we have studied has a pomeron whose bare 

propagator is 

i [ E-a0 d k’+ie] -* (1) 

and a fermion with a bare propagator given by 

i[E - ~o+~o~+~~ul~‘A++i~E-Ao-Po*JiT+~~~ _ ‘IA 

=i [~-a~ -pO~+cu~+iel -1 
(2) 
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where A, = i (1 7 k ) is the projection operator on parity eigenstates, 

2 
E = i-j = i -angular momentum, k2 = - kl = u, 1; = -y k 1 1’ and 

A0 is a constant which describes the intercept of the bare trajectory. 

For large. time-like u, the trajectories in (21, ol,(&i) = 1 - A, * 

p(pG+ cz&l , behave like u, are nearly degenerate, and both of them 

contain particle poles. In order to establish the analytic structure 

needed to eliminate one of the parity partners, we want to determine 

the nature of the fully renormalized fermion propagator in the region 

of small [u [ and \ E - A, [ . In calculating the renormalization group 

functions which determine the infrared behavior of the Green’s 

functions, only terms lowest order in fi are important, 3>8 and so, 

for simplicity we set CV~’ = 0 when calculating Feynman graphs. 

Nevertheless, the bare fermions propagators are of the form (2), 

and both parity pieces contain particle poles. 

The unrenormalized interactions are a triple pomeron coupling, 

x0, and a fermion-fermion-pomeron vertex, r 0’ The couplings are 

chosen to be purely imaginary, as required for an absorptive pomeron. 

Mass counterterms are also included as needed, to keep the intercepts 

of the renormalized trajectories at their observed value. 
4 

We are interested in this theory for small k2, and E close to the 

trajectories. In that limit, the fermion does not significantly affect 

the pomeron, and so the pomeron renormalization problem decouples 
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from the fermion. This pomeron problem has been considered by 

Abarbanel and Bronzan, 5 and the reader is referred to their paper 

for details. 

In renormalizing the fermion, we dimensionally regulate 

our integrals and choose as a renormalization point some negative energy, 

-EN, with all momenta set equal to zero. Our theory is scale invariant 

in one time (angular momentum) dimension, and D = 4 space dimensions. 

In the Reggeon field theory physics takes place when D=2. We therefore 

make an e-expansion about D=4 (for us E =2), and proceed to calculate 

the renormalization group functions to lowest non-trivial order in E. 

In this theory there are three dimensionless renormalized parameters 

which we choose to be 

D/4 

and 

( 1 EN 
D/4 

),=A - 
EN (Y’ 

.2 P=+ 
N 

(3) 

(1’ and p ’ are the renormalized pomeron and fermion slopes, respectively, 

Xis the renormalized triple pomeron coupling constant, and r is the 

renormalized fermion-fermion-pomeron coupling constant. 

We can now solve the coupled renormalization group equations in 

the usual way, and search for fixed points in this three dimensional 
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parameter space. Doing this, we find that there are two physically 

acceptable fixed points at which the infrared behavior is described by 

moving fermion and pomeron singularities and imaginary triple pomeron 

and fermion-fermion-pomeron couplings. In addition, there are several 

other fixed points of more mathematical and scholarly interest. 
3 

Interestingly, 

none of these fixed points is infrared stable. They are all unstable, and 

can be approached only from a plane in the three-dimensional parameter 

7 
space. Nevertheless. we can calculate the infrared behavior of the theory 

assuming that we are at the fixed point, or on the plane of approach. Let 

us now describe the behavior of the fermion propagator at the physically 

interesting fixed points. 

In the limit that we scale E -A, -F-+0, we can write for the 

renormalized inverse fermion propagator 

T(F, k2, (~‘9 P. g, he Ed) 

where y is not an integ:er at D = 2, and z = i + 5. The functions e1 

and $2 are dimensionless scaling functions whose arguments must be 

dimensionless variables. The values of p, g, and h at the fixed points 

in question are non-zero constants. They do not enter into this discussion 

in an important way, and will be suppressed from now on. Notice that 

the only way in which F and k2 enter into the scaling functions is in the 
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combination = k2FmZ. This is exactly the same form as that found for 

the pomeron trajectory by Abarbanel and Bronzan.5 

The right hand side of Eq. (4) can be written in a more convenient 

form: 

r(F,k2) = I+(F, k21 + r-(F,k2) = EN $+(X)A+ + $-k)A- 1 (5) 

so that for the fermion propagator we have 

G(F,k2) = G, + G- = 

where 

and 

h+(h-) is the projection operator for the positive (negative) parity 

part of the fermion propagator, and so r* are the inverse propagators 

for the positive and negative parity fermion states. 

~~~~ suppose there is a zero of r+ for Some value of x, SaY x0. 

Furthermore, suppose that 

2rrin 
6 1 2 (x0) = bi 2 k x0) 

where n is any integer. (This is true in an c-expansion of the scaling 

functions, as we shall discuss later. 1 In that case, it is easy to see that 
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r&6+ (x,) = 0 3 $+(e4Tinxo) = $Je2Ti(2n+i ) x0) = 0 (7) 
2 

For fixed u, we can now look in the F-plane and ask where these 
i9 

other zeros of I+ and I_ are. Writing u = ye , we find that 

and 

where 

=+ 
= 0 when F = Ce 

-i(4m - e)/z 

=‘_ 
= o when F = Ce-i(4m + Wz 

uz 

’ 

(8) 

Because of the cut in the inverse propagators generated by the factor 

Fy, these singularities will lie on different sheets of F. When 0 = 0, 

u > 0, and we can define the physical sheet to be that sheet on which the 

zero of I+ lies for n=O. It is convenient to place the cut along the negative 

real F-axis. Using (8 1, it is then easy to see that there are no other zeros 

of I+ or I- on the physical sheet for positive ‘il. This means that only the 

positive parity state is present as a physical particle. 

We can now continue in u to a negative real value by letting 6 -TT. 

The motion of the n=O zeros of F+ and F- is indicated in Fig. 1. Notice 

that‘the zero of F- moves through the cut onto the physical sheet for 

UC 0. Hence, it contributes to backward rr-N scattering, even though 

it does not exist as a physical particle. The other zeros of F+ and r- 

are all at least two sheets away, and for 0,s 0 5 TI do not appear on the 

physical sheet. 
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There are two very important ingredients for this result. First, 

the critical exponent, y, must be non-integral so that there is a F-plane 

cut in the inverse propagators. This is likely to be a general feature of 

theories such as ours which are not infrared free, even when calculated 

to higher orders in E. Second, Eq. (6) must be valid in order that we 

be able to determine the zeros of F- given the zeros of F+’ To lowest 

order in E, we can determine the scaling functions by observing that at 

all fixed points, h -cf. This means that to lowest order in E, the 

scaling functions can be simply determined from the bare propagator, 

and Eq. (6) can easily befseen to be valid. Moreover, an analysis of 

terms higher order in E indicates that (6) is valid there also. Note 

that we do not require an e-expansion of the scaling functions for 

arbitrary values of x, but only for a certain finite value. This is 

fortunate, since the radius of convergences in E, of the o s may depend 

on x, especially when x * m . 
7 But this problem need not concern us. 

The formula in Eq. (5) seems to indicate the presence of a fixed cut 

in the F-plane. However, our argument does not require that this cut be 

fixed. All that is necessary is that when 6 is continued from IT to zero, 

the zero of r- passes through the cut onto a different sheet. The scaling 

functions could contain compensating singularities which cause the cut to 

move with u, but as long as it doesn’t move too fast our conclusions are 

still valid. On the other hand, the scaling functions could, in principle, 

contain a cut which exactly cancels the factor Fy. In that extreme case, 
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of course, our arguments would be invalid. However, in view of the 

preceding discussions we consider this an unlikely possibility. 

It is interesting to note that our renormalized trajectories no 

longer behave like fifor small u but almost as u. One could, of 

course, have chosen bare fermion trajectories which, for small u,were 

proportional to u. However, the simplest starting point for our theory is 

to try to expand the bare trajectories in a Taylor’s series in &, as suggested 

by the MacDowell symmetry, and there is no a priori reason to drop 

the term proportional to hir;l The exact behavior of the trajectories for 

larger u cannot easily be determined from our considerations. Never- 

theless, regardIess of what the form of the trajectories is for large, 

time-like u, our argument on the disappearance of the negative parity 

partner pole from the physical sheet will be valid, unless for large, 

timelike u, the pole turns around, moves through the cut and onto the 

physical sheet again. We cannot prove that this cannot appear but it 

is clearly an unnatural option. 

In this note we have discussed the dynamical mechanism by which 

fermion parity partners are removed from the physical j-plane sheet for 

positive u, even though they are present in the bare unrenormalized 

theory. Notice that we do not require the absence of all negative parity 

fermions. Our result only indicates that those that appear cannot be 

though of as parity partners of other, observed, positive parity fermions. 

The requirements of the renormalization program which are necessary 
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to achieve this effect are not very restrictive and are likely to be 

satisfied by most reasonable Reggeon field theories. One outstanding 

exception to this are certain infrared free theories in which an F-plane 

cut will not be induced. 9 But aside from such theories, it is difficult to 

imagine a reasonable renormalized world in which the fermion parity 

partners would not be forced to disappear. 

We are very grateful to H. Abarbanel, R. Sugar, A. White and 

especially 3. Bronzan for many enlightening discussions. 
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FIGURE CAPTION 

Fig. 1 Motion of the n = 0 positive and negative parity poles 

of the fermion propagator in the F-plane as u goes 

from a positive to a negative real value. The solid 

line refers to the physical sheet, while the dashed 

line refers to the unphysical sheet. 
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Figure 1 


